FacebookTwitterDiggStumbleuponGoogle BookmarksRedditTechnoratiLinkedin

Welcome

The Martin Fleischmann Memorial Project is a group dedicated to researching Low Energy Nuclear Reactions (often referred to as LENR) while sharing all procedures, data, and results openly online. We rely on comments from online contributors to aid us in developing our experiments and contemplating the results. We invite everyone to participate in our discussions, which take place in the comments of our experiment posts. These links can be seen along the right-hand side of this page. Please browse around and give us your feedback. We look forward to seeing you around Quantum Heat.

Join us and become part of the project. Become one of the active commenters, who question our work and suggest next steps.

Or, if you are an experimenter, talk to us about becoming an affiliated lab and doing your work in a Live Open Science manner.

Error
  • Error loading feed data

The first test run of the Steel and Glass cell suggested that it took approximately 6% more power to maintain the same volume of water at the same temperature in the control cell when compared to the active cell.

New Experiment Improvements

So, spurred on by the seemingly positive preliminary run of the Steel and Glass cells and taking a plethora of advice from the crowd, Nicolas sought to make some improvements to the experiment. The biggest revelation came from Celani, who informed us that the teens class wires (14 & 16L) that we used in the first run were actually the worst capability wires, this was explained in the previous blog post. So for this run, a new 14L wire was joined by a 360L wire.

You can see in the following images there were several improvements made to the experiment, many suggested by our followers. Chief of which was that the water containers were partially insulated with styrofoam boards.


Figure 1. Overview of the apparatus

Also, water stirrers were added and mounted in the same position and angle, pushing hot surface water down and creating a vortex.
Figure 2. View of stirrer blades set at angle in water and the driving motor mounted outside.

Water thermocouples were mounted on floaters to measure the water temperature at the same height from the water top level. This was ultimately found to be unnecessary, since the water temperature was very homogenous due to the action of the stirrers. In fact, the variation between bottom and top was only ­±0.1°C.

In the image below, the laptop on the left is running HugNetLab for data capture. The PSU with the blue display underneath is powering the water stirrers (2x DC motors in series), whilst the Dell laptop on the right is managing the duty cycle for them.

The 2 TTi dual channels PSUs are powering the 4 wires.

  • The top PSU is for Cell#2 (active)
  • The bottom PSU is for Cell#1 (passive)


Figure 3. Arrangement of power, control and data acquisition hardware.

A complete gallery of the setup can be found here.


The Second Run

The second experiment was set up and run between 9 and 25 May 2013, the logbook of which is here

https://docs.google.com/spreadsheet/pub?key=0Au5C1oywPfSKdGhxM1F6ZGNwSmxOZUh3bEZyMmRMMHc&output=html

Unfortunately, whilst the data was recorded on a laptop, it was not able to be uploaded to the MFMP’s data repository due to what turned out to be a failed hard drive and a problematic software upgrade process. Until the data is available on-line however (which should be very soon), it is contained below in some spreadsheets for you to work through.

Here is the data for the wire loading in Cell#2 and the runs for both cells (11 days).

https://docs.google.com/file/d/0Bz7lTfqkED9WSkpVYjdrc3ZWNzQ/edit?usp=sharing


 

Experiment Configuration

For each cell

  • 1 TC inside the glass tube for T_mica
  • 3 TC in the middle chamber for T_glassout1, T_glassout2, T_glassout3

Cell#1:

  • 2 Nichrome wires
  • Hydrogen pressure: 2.054 bars @38.5°C inside the glass tube
  • Helium pressure: 127 mbars @ 35.0°C inside middle chamber
  • Input power: varies from 60W to 70W (30W to 35W in each wire)

Cell#2:

  • Blue channel: 360L constant wire
  • Red channel: 14L constant wire
  • Hydrogen pressure: 2.054 bars @38.5°C inside the glass tube
  • Helium pressure: 127 mbars @ 35.0°C inside middle chamber
  • Input power: 60W (30W in each wire)

Preliminary Results for tentative discussion

Finding 1: Approximately 19% loading (0.81 R/R0)

Graph 1. Hydrogen loading related resistance changes over time.


Finding 2: There seems to be good evidence that more power is required to get the passive (control) cell to achieve the same water temperature as the active cell.

The graph below shows total input power for each of the cells (LHS) and the temperature of their corresponding water bath (RHS) over time. Cell 1 is the passive, cell 2 is the active. Annotations have been added to note events recorded in the log book. Note that the rate at which ambient affected the cells is relative to the water temp in the cells to begin with. Unfortunately, no ambient temp was recorded, but we feel there is some important information in the data anyhow.


Graph 2. Over view of power and temperatures in cells with logbook event annotations.


For detail purposes, the graphs below show how resistance changes in the Celani wires required power to be adjusted to maintain an approximate 60W total in the active cell.



Graph 3. Resistance change in active cell over time.


 



Graph 4. Fine power adjustments in active cell over time.


 

Preliminary Conclusion

We have an experiment design that is extremely easy to understand and that if the results hold up to scrutiny and are repeatable, we might have a suitable lab rat.


 

Further Work

In the next run, we will be using 2 X 400L class wires. We also intend to run for a longer period of time in order to get a more settled result. Ambient forcing and water level top up are problems seen in run 2, these are to be dealt with in the next test. The former by sitting the cells in chest freezers with the power off and the latter by sealing the tops of the containers.

We may later want to consider a mass flow variant of the outer shell which would allow accurate measurement as well as faster response times. Also, a larger inner cavity/more passthroughs would allow experiments on potential trigger and stimulation approaches.


UPDATE#1 - Last block of data available

As the data upload is taking so long, Nicolas has pulled the last block of data for this run from the laptop. To avoid you having to wait to see it, you can grab it from the link below, we'll try to find time to produce an annotated graph similar to graph 2 above.

Last block of data for run two

Please dig into the data and yes, we know that ambient would have been hugely useful here.


UPDATE#2 - Should we use a different heater?

So a few weeks back, whilst this run was underway, Celani phones us and says that he is stopping using NiChrome wires as "passive" wires  in his experiments because of their potential to exhibit excess heat.

This email address is being protected from spambots. You need JavaScript enabled to view it.&q=from:%22Jones+Beene%22" rel="nofollow">Whilst this should not be a problem for the Dual V2 protocol differential cells as there is no H2 in the passive cell under calibration or "active" run, it could be a factor in this experiment as the wires are in an H2 atmosphere.

One commenter called 'Jones Beene' on the Vortex forum alluded to this and suggested that we use some Kanthal resistance wire which is Iron-Chromium-Aluminium. This does not contain Nickel for certain, but it does contain Chromium, which according to Dr. Stoyan Sargs Basic Structures of Matter, Super Gravitational Theory's analysis, could be a very good candidate for the New Fire.

So, what to do. How about something radical. If the aim is to reach a steady state temperature in both water volumes, if we have them well sealed, stirred and well thermally insulated, how about just having a resistive heating element to heat the control water? Before you scream "different thermodynamics and time constants" well, that might just play to our advantage.

Think about it, it was difficult in the first two runs to match the active cell bath temperature because of the time constant being so long when making power adjustments to the passive cell. By the time the effect of the power adjustment had taken place the effect of ambient and potentially excess heat had made a moving target. Having a simple heating element would make the adjustments more immediate until the steady state of the overall systems were reached.

Ok, basically, maintain same power into active cell should achieve a target water bath temperature/rate of rise until steady state. Responsive adjustment to the heater element in the "passive cell" could allow rapid and responsive matching of its water bath. No LENR present in the heater element.

It has an added bonus of simplifying and reducing the cost of the experiment. Comments as ever below.


UPDATE#3 - New graph from second data tranche

Ok, so one of our followers produced a graph from the second tranche of data pulled from the laptop the other day, this is when things got closer to steady state and shows the importance of running an experiment like this for some time, here is what it looks like.

Active cell - input power RED (LHS), water bath temperature YELLOW (RHS)

Passive cell - input power BLUE (LHS), water bath temperature GREEN (RHS)

Graph 5. Fine adjustments of control cell input power to attempt to make its water bath reach active cells water bath temperature.

As ever, comments please!


UPDATE#4 - Exaggerated cool down graph

So it appears all of the data from the laptop is now uploaded to the online repository for people to explore in detail. It is interesting to note that data is recorded on the data logging laptops even if it cannot be pushed to the data repository, this proved very important given the failure of the harddrive in the array.

Below you can see the available data before the experiment was stopped of the cool down from steady state seen in Graph 5. The zoom in is further exaggerated because of the baseline being at 30, if it was 0, it would be very hard to distinguish any separation. There is however an extremely minor separation of much less than 1% over the 8 hour period. This indicates however that any thermal loss difference between the cells in the 3+ days of steady state in graph 5 when the control required 8.3 - 10% more power is not material to the indicative preliminary findings of this experiment.

Note: Ambient is actually the water bath temperatures on the data repository

Graph 6. Exaggerated cool down

Comments   

 
0 #97 best writing service 2020-04-10 22:52
It's not my first time to go to see this web site, i am visiting this web page
dailly and get nice information from here every day.
Quote
 
 
0 #96 Apcalis Oral Jelly 2020-03-27 21:37
I every time emailed this blog post page tto all my friends, since if like to read it afterward myy links will too.


Also visit my blog - Apcalis Oral Jelly: http://hrw-fablab.de/wiki/index.php?title=Benutzer:PRXLloyd076919
Quote
 
 
0 #95 Apcalis Oral Jelly 2020-03-27 21:36
I every time emailed this blog post page tto all my friends, since if like to read it afterward myy links will too.


Also visit my blog - Apcalis Oral Jelly: http://hrw-fablab.de/wiki/index.php?title=Benutzer:PRXLloyd076919
Quote
 
 
0 #94 야동 사이트 추천 2020-03-20 19:47
제한이 나타나는 매우 명백한 때 우리는 말에 대한 체중을 획득과 손실을,그러나 현실에서,이러한 논의와 함께 보다 더 단순히
음식을 섭취. 일주일에 세 번 우리 체중 코칭을 우리는 그것에 의하여서만 사용되는 우리의 체격 무게 저항입니다.

해야 당신이 결정하여 사용하는 각 유형의 기저귀를
가능하게 할 수 있는 젊은이는 십대에 넣어 pin-에 기저귀 바지 및 플라스틱을 위한 4nights 며 일회용 기저귀한 세 가지 일(또는 그 반대로)궁극적으로 어머니와 아버지를 해결 자체에 대한 여부는지를 모두 사용할 수 있도록 종류의 기저귀한 침대 자녀.

거기에는 또한 다양한 유형의 핀에 기저귀-prefold,
평면,와줍니다. 에 대해 더 깊이의 대화에 대해 완전히 다른 스타일의 천 기저귀조
제 7 장의 새로운 기저귀 프라이머입니다. 이
장은"로 알려진 기저귀 종류"그리고 협상에 관해서는 몇 가지 유형의 천
기저귀와 완전히 다른 종류의 직물 피복
기저귀로부터 제조될 수 있다. 에서 모두
금융 시스템 차원에 위치한 5 매트리스룸 휴 객실을 찾을 수
있습니다 바로 여기에 있습니다.
Quote
 
 
0 #93 site 2020-03-09 18:16
Thanks for sharing your thoughts. I truly appreciate
your efforts and I will be waiting ffor your next wrijte
ups thanks once again.

Also visit my homepage site: http://www.forum-mecanique.net/profile.php?id=2268523
Quote
 
 
0 #92 edit HTML 2018-08-09 13:05
I wanted to thank you for this good read!! I absolutely loved every
bit of it. I've got you saved as a favorite to check out new
stuff you post…
Quote
 
 
0 #91 Paul 2013-06-24 19:38
... PX= 6% if T1=T2; PX=0 if T1 = 1.06 * T2, etc. (Of course, this is true only if temperature vs power is linear.)
Quote
 
 
0 #90 Paul 2013-06-24 19:29
Rather than varying the control cell input power to match the active cell water temperature, how about adding water to the active cell while maintaining constant input power to both? Add 6% volume and measure the temperature differential. Just a thought...
Quote
 
 
0 #89 Paul 2013-06-24 19:24
Perhaps you can better control for changing room temperature by sealing the devices and submerging both in a single water bath. The common bath could be be maintained at a constant temperature by trickling in tap water, which should be stable on a seasonal scale. Six or so watts of excess power is unlikely to create cross-talk within the bath. (But 2 baths would make it bullet-proof.)
Quote
 
 
+1 #88 Edwin Pell 2013-06-16 07:09
There is a limit to what can be done with insulation. For a give insulation we can use more passes of wire. Eight passes of wire can be operated at 1/8 the input power and give the same temperature drop as one pass at full power.
Quote
 

Add comment


Here is your generous contributions so far towards our $500,000 target, thanks everyone! : $45,020   Please Donate
See the current state of our booked costs here

MFMP Facebook Feed