FacebookTwitterDiggStumbleuponGoogle BookmarksRedditTechnoratiLinkedin

Welcome

The Martin Fleischmann Memorial Project is a group dedicated to researching Low Energy Nuclear Reactions (often referred to as LENR) while sharing all procedures, data, and results openly online. We rely on comments from online contributors to aid us in developing our experiments and contemplating the results. We invite everyone to participate in our discussions, which take place in the comments of our experiment posts. These links can be seen along the right-hand side of this page. Please browse around and give us your feedback. We look forward to seeing you around Quantum Heat.

Join us and become part of the project. Become one of the active commenters, who question our work and suggest next steps.

Or, if you are an experimenter, talk to us about becoming an affiliated lab and doing your work in a Live Open Science manner.

Happy Christmas Day, 21:45 Fiji

The MFMP announce Project /Fedora\

Following over two years of reach out and a concerted effort this year, the MFMP is to work with the consummate scientist Francesco Piantelli, the Father of the Ni+H New Fire to realise our primary goal.

More details to follow...

Since the resistance drop during loading seems to be correlated with real hydrogen absorption, we wondered how difficult that was to recreate.  To explore that, we decided to make our own wire to fit into a LENR stick test cell and test for resistance drop when heated in hydrogen.

Starting with Block Constantan - 200 micron diameter with a black, oxide coating, we treated this particular wire with 2160 cycles. 

- Approx 21 V, and 3 amps

- 5 seconds on, 5 seconds off (not exactly as described in this paper http://lenr-canr.org/acrobat/CelaniFexperiment.pdf)

Wire resistance increased as the cycles progressed, causing the power to decrease over time.
Similar treatments had produced wires that kink, which is similar to the way the Celani wire behaved.  We have not looked at it with SEM, yet, as our microscope is tripping out too easy.

Length:40 cm long
Sample of wire saved for SEM analysis
 
Put into LENR stick on 9/18 - it had set for a couple days in the jig after processing before being used. Small possibility it was touched or had dust settle on it.
R0= 7.9 ohms (multi-meter)
R0= 7.3441 ohms (first readings from HUGnet)

 

 

This will be a simple test of loading, but done in the calorimeter, just to see what happens.  

It is in test FC0407 - LENR Stick: HUG Made Wire in data.hugnetlab.com

And in Calorimeter CTC#3, just above that.

We have more documentation in our Evernote notebook for this experiment here: First Homemade Celani Wire 

After a long delay as we failed to troubleshoot the water flow calorimeter, the Multi-wire test has been installed in a concentric tube calorimeter.  It is now heating up and the first of the 3 wires is starting to drop resistance.

This is the test with 3 lengths of different Celani wires in a LENR-stick test cell.  All the details are in the protocol document here: Protocol:  Multi-Wire Test

Previous blog post: Multi-wire test commencing -Update4

 

You can follow the data on Test FC0405 LENR Stick: Multi-wire  and FC0403 CTC #2: Air Jacket

 

From Malachi:

We are starting to see the 270L wire loading.  The internal temperature is ~208C.  The interesting thing is that neither of the other wires (350L and 400L) are dropping in resistance yet.  Could lower numbers of layers correlate to a lower loading temperature? This test will be an interesting one in the coming weeks!

The other two wires (a 350 layer and a 400 layer) are actually increasing over time at this temperature.

 

The test with 3 lengths of different Celani wires in a LENR-stick test cell is commencing in the water flow calorimeter.  All the details are in the protocol document here: Protocol:  Multi-Wire Test

The Experiment Log specifically for this test is linked from the document, along with the data field definitions.

It took us a bit longer to get this started this week because of some troubles with room temperature, air filters, and a leak around the pressure sensor.  All that seems to be fixed and we are starting the loading phase, now.  The loading will take a while since it requires manual intervention to go to each new level.  The process was suggested by Celani.

 

  1. Loading at 5 bar
  2. Start at 75C, hold till resistance levels off
  3. Step up in 25C steps up to 450C, hold till resistance levels off (keep cell below hydrogen permeability of SS)
  4. Refresh pressure as needed due to absorption
  5. Cool down, drop pressure to 1 to 2 bar to allow flux out of wire on next heating cycle
  6. Heat up again to 350 or 400
  7. Watch for pressure rise indicating flux out of wire, and watch for excess heat.

Wish us luck and keep posting observations and suggestions.

The tests in the live data viewer are:

FC0404 Water Calorimeter
FC0405 LENR Stick: Multi-wire

Thanks

-Ryan hunt

 


Friday morning:  

This morning we are troubleshooting the water flow calorimeter to try to identify why the test cell appears to be running 10C higher than expected and the calorimeter shows almost a watt of excess.  These two facts would be highly compelling on their own, but it appears that the exiting water temperature from the calorimeter was  rising slowly over a couple of days before the hydrogen was even added.  Our leading theory, at the moment, is that the cell temperature is due to changes in the foil wraps around it, and that thermistor 4 may be drifting- possibly due to moisture penetrating it.

To test this, we are turning off all the power to the cell, turning up the water flow to max, and watch to see if the sensor comes back in line with the others, or whether it retains a high bias.  We'll keep you posted.

 


Friday Afternoon:

After doing the zero power test, we still saw Thermistor 4 reading higher than it should, so we decided to change the way things were working.  We have seen thermistor drift on Thermistor-1 previously and just replaced it.  This time we decided to re-engineer the way the sensors are installed.  The old system had the thermistors sealed into heat shrink tubing with hot melt adhesive.  The new system is tiny copper thermowells installed into the side of the silicone tubing. The thermistors are fixed intot he thermowells with a small amount of silicone adhesive along with a length of cotton sewing htread to act as a moisture wick to allow an exit path for any moisture finding its way near the sensor.  

Below:  Tiny copper thermowells made from .052" ID copper tube crimped and soldered on one end.  They insert through the wall of the silicone tubing.  They seal bey themselves, but we are adding a fine film of silicone seal to help make sure the seal is tight.

Below:  A new thermowell inserted for the Thermistor 3 sensor.

Below:  We see Thermistor 4's thermowell going into place.  Beside it is the exposed trouble maker of the day wrapped in the heat shrink tubing.  I took the sensor under a microscope, but didn't see any obvious signs of corrosion or any visible moisture with the plastic tubing.  

Below:  We see Thermistor 2 being installed with a dot of silicone and the cotton thread that will act as the wick.

 

Unfortunately, this means the test will be delayed till next week as the silicone adhesive cures over the weekend.  We are hopeful that as long as both manners of installing the sensors provide accurate reading of the actual water temperature that it will not affect the calibration.  That will have to be tested, though.  We also, do not believe that the sensors were drifting during the calibration runs because of the tightness of the many different runs we did through the calibration steps.  The data is available if anyone wants to validate that for us.  

Think it will work?

 


 

Update 8/14/13

We appear to have solved the drift problem with the new thermowells that are copper and much less water permeable.  We re-zeroed the thermistors so they all related to each other nicely and had to debug a bit of debris in the flow regulating valve.  Malachi did check the aluminum foild wrapping and found it to be loose and forming a spiral with multiple air layers that caused the internal temperatures to be higher for a given amount of power.  While the insulation value is desirable, we decided to put it back the way it was during calibration.  The next step is to check the calibration and make sure it reads appropriately.  The challenge there is that we cannot know for sure that the wires are not giving off excess heat since they have now been exposed to Hydrogen, so if it appears to be off calibration at low powers, we will have to replace the cell with a control cell and re-calibrate.

Step 1:  3.5 watts input power and we will watch the power out and the internal temperature.

 


Update 8/15/13

Last night we stepped the power up from 0.5 to 3.5 watts to try to gauge the slope of the calibrations and compare it to the original calibration.  The result is that the slope is off a bit.  That means we have to swap out the active LENR stick and replace it with a similarly configured one with a plain electric heater in it and run some calibration cycles on it.  

Looks like next week before we get back to loading the active wires.

 

We are ready for some fun.  We shoved 50 meters of bare constantan into a 12CC cell, calibrated to 500C, and we're almost ready to start loading it.  The entire details are in this document: 50m Wire Test

And we just kicked off the pre-loading off gassing step in the protocol.  Give me your thoughts!

 

UPDATE 6-28 17:30

The cell was run last night under a passive vacuum at 500C. The valve was closed before the cell was heated and the gauge read 1 mBar.  Overnight a small amount of gas seemed to come out of the hot wire but the pressure sensor saw some 1 mBar oscillations of pressure with about a 20 to 30 minute period.  

This morning we opened the valve to expose the hot wire to active vacuum for a while.  Then we cooled the cell, loaded to 10 bar hydrogen and then started heating looking for where the wires would start to absorb hydrogen.  We scanned between 120 and 250C, roughly.  We didn't see any notable resistance drop or absorption, but we did see a very puzzling pressure oscillation ~ 40 mBar, 4 minute period.  It's so regular it is hard to imagine it as a wire related phenomenon, yet we don't have anything we know of making any sort of 4 minute signal, especially one so nicely sinusoidal.  Suggestions?

UPDATE 18:09 -- MYSTERY SOLVED - it is the PID control loop for the Active insulation causing a temperature to change in the pipe.  At low pressures it is not noticeable on the pressure gauge.  At this pressure it is much more noticeable.  It will average out over several minutes, though.  We are going to tweak the control loop to minimize the oscillations.

 

Since we didn't see any noticeable loading up to this point, though, we are going to continue raising the temperature to see if we can trigger any.


UPDATE#2 - STUNNING GRAPH

So the reactor is now at the 1st phonon resonance temp of Cu63 (the target element) as put forward by one of our followers in his freely published document you can review here

http://www.human-resonance.org/Qi.pdf

He suggested his research showed that if we hit the 489 degrees C in pressured hydrogen atmosphere, over time the Ni62 would become Cu63.

From the text:-

"Precision heating of nickel powder to 489°C or 859°C resonance with copper isotope Cu63 in the presence of pressurized H2 gas will target and maximize conversion of nickel into stable copper. The nuclear fusion reaction that produces excess heat can be specifically targeted by precision heating of the reaction to 620°C or 966°C resonance with meta-stable copper isomer Cu68m"

Now just look at what is going on in the cell!

You might note that the 2nd resonance temp is ballpark the December rossi temp where the cell melted down and the second is ballpark the 2nd COP 5.7 test... the 3rd test at a lower temp (in the range of our Celani experiments) but much lower COP.

Food for thought?


UPDATE#3 - Resistance dropping?


UPDATE 4 - Temperatures overshooting and other fun stuff

 

The last 24 hours have been extremely interesting as our bare constantan started demonstrating the same behavior that Ed Pell reported seeing with a very similar experiment in the last few days.  In addition to all the insanely useful analysis in the comments, I would like to add the following 24 chart and point out several of the features I found interesting.

Overshooting Temperature

This graph shows the pressure being refreshed to almost 10 bar while the cell was cold (note, the calorimeter runs warm, so "cold" is relative).  Then the power is turned on to 37W and the temperature in the cell rises to 511.4C, then proceeds to settle down to 499.1, or so, after a while.  This cell did not do that when operating near 400C a few days ago, and did not do that with the wires in place before hydrogen was added.  Each subsequent step since then has displayed the same behavior, though the size of the overshoot was decreasing.  The measured output power from the calorimeter showed the same basic shape, but only with an amplitude of about 60 mW, which is not beyond the confidence limits

Behavior of the Pressure

The drop in pressure is highly unlikely to be leakage, as far as we can tell, given that the pressure drop mostly stops when the cell is cooled down, and in the last few cycles, has actually increased.  If it is not leaking out, it is probably really absorbing, and our best guess at the moment is that it has absorbed ~40% by moles of Ni in the wire (spreadsheet) Figures are rough because of uncertainty about actual volume of cell after the wire and fiberglass sheathing is inserted.  The rate of absorption changes at 6:53, also.  It is after that change that the pressure starts rising while the cell is turned off.

Resistance

The resistance is starting to be interesting, also.  In the graph, the resistance value rises when the temperature overshoots, too, possibly indicating that the higher temperature is localized at one spot on the wire that is getting significantly hotter.  Then it develops little sudden jumps.  These values are small, but clearly above the noise levels.  In the latest data (so new it isn't on this screen capture, the resistance is rising after a rather larger little jump in the resistance.  

Another interesting thing is that the resistance of the wire does not come back very close to the level it was before the first heating cycle started.  And even before the first cycle pictures, the resistance rose slightly as the hydrogen was loaded.

 

 

The meaning of it all?  I have no idea.  BUT, the overshooting is extremely interesting.  A big thank you to all the people following and contributing to the analysis of these events.  Especially, we'd like to thank Ecco, who we suspect is really a whole team posting under the same name because of how much he contributes :)

Our plan is to just keep letting it cycle and load as we watch.  Should make for an interesting holiday weekend here in the US.

 

 One more graph to leave you with, tonight:

Note how the rate of pressure drop increased tremendously in the second set of cycling.  We also upped the current through the active wires to 1 amp in between the cycle sets.  When we were running at 500 at the 12:00 on the 29th we also saw the faster rate, though, so it appears temperature dependent.

 

 

UPDATE 5 - Pressure Bottomed Out at 0.23 Bar

It certainly appears that the wire is continuing to absorb the Hydrogen even below atmospheric pressure.  We allowed the cell to bottom out at roughly 0.23 bar.  After that, the resistance slowly increased and the wire seemed to be releasing gas slowly and then reabsorbing it quickly every so often.  Curious, huh?  Funky stuff going on in that wire as it interacts with Hydrogen. 

After observing the minimum pressure for a while, we decided to refresh the pressure and try to achieve higher loading ratios.  We are currently at approximately 62% H to Ni.  We do not know what the Cu in the wire will do regarding Hydrogen.

 

Here is your generous contributions so far towards our $500,000 target, thanks everyone! : $45,020   Please Donate
See the current state of our booked costs here